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Abstract—An increasing number of data science approaches
that take advantage of deep learning in computational medicine
and biomedical engineering require parallel and scalable algo-
rithms using High-Performance Computing systems. Especially
computational methods for analysing clinical datasets that con-
sist of multivariate time series data can benefit from High-
Performance Computing when applying computing-intensive Re-
current Neural Networks. This paper proposes a dynamic data
science platform consisting of modular High-Performance Com-
puting systems using accelerators for innovative Deep Learning
algorithms to speed-up medical applications that take advantage
of large biomedical scientific databases. This platform’s core
idea is to train a set of Deep Learning models very fast
to easily combine and compare the different Deep Learning
models’ forecast (out-of-sample) performance to their past (in-
sample) performance. Considering that this enables a better
understanding of what Deep Learning models can be useful
to apply to specific medical datasets, our case study leverages
the three data science methods Gated Recurrent Units, one-
dimensional convolutional layers, and their combination. We
validate our approach using the open MIMIC-III database in a
case study that assists in understanding, diagnosing, and treating
a specific condition that affects Intensive Care Unit patients,
namely Acute Respiratory Distress Syndrome.

Keywords—High-Performance Computing; MIMIC-III
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I. INTRODUCTION

The technology involved in collecting, storing, and pro-
cessing information has advanced to such an extent that we
have at our disposal data on almost every aspect of the
world we can observe; this is true on a Universe1 ,2, global3,
local4, or personal level. This abundance of data means that
Machine Learning (ML) experts can use new innovative tools
to improve their sequence models, for example, improving
Natural Language Processing (NLP) algorithms by process-
ing open-access literature5. New ML methods are increasing
image processing algorithms’ accuracy with labelled open-
source photographic data [1] and enhancing weather prediction
protocols with long and detailed weather records that go back
several decades3. Specifically, in the medical field, Electronic

1https://exoplanetarchive.ipac.caltech.edu/index.html
2https://ai.googleblog.com/2018/03/open-sourcing-hunt-for-exoplanets.html
3https://www.ncdc.noaa.gov/cdo-web/
4https://www.europeandataportal.eu/data/datasets/10532954-7c62-44d4-826a-

34642954e394?locale=en
5https://www.elsevier.com/connect/new-open-access-resource-will-support-
text-mining-and-natural-language-processing

Health Records (EHRs) have made it easier to group data
of many patients diagnosed with the same conditions from
several hospitals, countries, and even time periods to highlight
previously overlooked markers that could improve treatment
or accelerate diagnosis [2]. Applying ML and Deep Learning
(DL) techniques to this data has the potential of uncovering
underlying correlations that would otherwise require several
researchers several years to piece together [3]. All the above
relevant methods and techniques for medical data sciences
have in common that we observe a significant increase in
the requirement of having larger computing capacity available
(e.g., HPC for distributed training of deep learning networks).

This paper addresses the increased complexity that medical
experts experience when interacting with High-Performance
Computing (HPC) resources which are becoming more widely
available in academic centers and accessible through public
cloud resources as well. That also includes an increase in the
power of HPC resources available through research institu-
tions, clinics, and hospitals. Aside from their regular duties,
medical experts have to learn to navigate these resources in
order to perform their analyses as opposed to the traditional
data analysis performed on personal computers. This paper
thus describes one flexible platform approach wherein this
problem is mitigated and there is no need for medical experts
to pick up any specialised high-level programming skills. Fur-
thermore, today, it is possible to scale medical applications of
the above-mentioned DL and ML techniques in a way that fits
the growing size of the data available through EHRs. But the
quality of the data stored in EHRs represents another challenge
for medical experts in the data analysis process. It varies
between institutions due to different reporting standards or
sensor configurations, while in parallel, several EHR standards
are currently being used in hospitals, adding another layer
of complexity to the equation and ultimately influencing the
quality of any data analysis task.

This paper addresses these challenges by proposing an
HPC-enabled platform that assists in data preparation and
understanding to help medical professionals by taking advan-
tage of algorithmic techniques and efficient computing and
storage resources. We use one specific medical condition as a
driving use case for the design and evaluation of this platform.
Hence, our platform employs ML and DL models in the
analysis of patient information to predict missing values in
medical datasets while keeping the technical complexity to a



low degree. This model aims to assist in the understanding,
diagnosis, and treatment of a specific condition that affects
Intensive Care Unit (ICU) patients, namely Acute Respiratory
Distress Syndrome (ARDS) while not losing sight that this
platform can be used for other medical conditions.

The remainder of this paper is structured as follows. Related
work is reviewed in Section II and Section III provides brief
overviews on medical and technological methods required
to understand the paper. Section IV describes the dynamic
data science platform tailored to support clinical researchers
in understanding ARDS. While Section V reveals our data
analysis approaches, followed by our evaluations and findings.
This paper ends with some concluding remarks.

II. RELATED WORK

In this section we survey related works that are relevant
in context (e.g., simulators of disease progression, machine
and deep learning approaches, etc.). The research by Wang et
al. showed the importance of using mathematical modeling
in the treatment of chronic obstructive pulmonary disease
patients (COPD). Their approach employed a physiological
simulator of the cardiopulmonary system, tuned to replicate
the responses of COPD patients, in order to test mechanical
ventilation protocols in silico[4]. Their work builds on original
work by Hardman et al. who initially developed a physio-
logical simulator of the respiratory systems of a patient that
was capable of accurately representing responses to changes in
mechanical ventilation maneuvers[5]. Das et al. describe the
development, testing, and validation of a virtual patient model
that can accurately mimic the physiological state of ARDS
patients[6]. Their work is a continuation of the work on the
physiological simulator described in the work by Wang et al.

In terms of applications of machine and deep learning
techniques in the context of ARDS analysis, Le et al. trained
a gradient boosted tree model using the Medical Information
Mart for Intensive Care - III (MIMIC-III) database that would
provide an early prediction model for ARDS. Their model
could accurately detect onset of ARDS, and had a relatively
high predictivity of the condition up to 48 hours before
onset[7]. Che et al. employed the MIMIC-III database, as
well as synthetic data, in the development and testing of
a novel Recurrent Neural Network (RNN)-based mortality
prediction and classification model. Their GRU-D model is
based on the Gated Recurrent Units (GRUs) discussed earlier
in this paper, with an trainable decay mechanism and an
application of "informed missingness" that take advantage of
some of the inherent properties of medical timeseries data (i.e.
homeostasis) in order to accommodate missing values[8].

Finally, Punn et al. fine-tuned and compared the perfor-
mance of several current deep neural networks in diagnosing
COVID-19 from chest X-ray images. The models were tested
for binary classification in order to find out whether COVID-
19 is detected or not, as well as for multi-class classification
where the model would distinguish between healthy, COVID-
19, and pneumonia patients, highlighting the NASNetLarge-
based model as superior to the other proposed models [9].

III. MEDICAL AND TECHNOLOGICAL METHODS

A. Acute Respiratory Distress Syndrome (ARDS)
ARDS is a medical condition that affects an average of 1-

2% of mechanically-ventilated (MV) ICU patients and has a
40% mortality rate [10, 11]. At present, the leading protocol
for diagnosing this medical condition is the Berlin definition
that defines the onset of ARDS as a prolonged ratio of arterial
oxygen potential to fraction of inspired oxygen (P/F ratio) of
less than 300 mmHg, and the lower this value is determined to
be, the more severe the diagnosis is [12]. Several papers have
determined a correlation between early detection of the onset
of ARDS and the patient’s survival, highlighting the need for
early detection and treatment of the condition before the onset
of sepsis and multi-organ failure [11, 13, 14]. Also, several
MV protocols stabilise and remedy the lung injury at the root
of ARDS with the most promising being the ’low tidal volume’
and ’high Peak End-Expiratory Pressure (PEEP)’ ventilation
[13, 15, 16]. However, these procedures depend significantly
on the ICU personnel and are considerably subjective to each
case. For this reason, an algorithmic approach seamlessly
accessible through a platform that provides early warning
and informs medical staff of mitigating procedures can be an
extremely beneficial tool in the hands of ICU personnel.

B. Large Medical Databases for Scientific Research
The computationally powerful data platform’s requirements

are driven by our German Smart Medical Information Technol-
ogy for Healthcare (SMITH)6 project, with more than seven
university hospitals and clinics taking part in it to deploy those
solutions in daily medical care. The activities related to the
realization of such a platform are part of the Algorithmic
Surveillance of ICU patients (ASIC) use case in the SMITH
project. The goal of ASIC relies in applying modern technolo-
gies to the healthcare system [17]. This use case’s specific
focus is to work with ARDS-related patient datasets, process
them, analyse them, and understand the correlations between
the features to predict outcomes from small changes in phys-
iological parameters. The evaluation of the design of such an
HPC-driven data science platform requires to access datasets
that are very close to real datasets in those clinics. However,
using the medical datasets directly from involved SMITH
clinics is subject to many regulations (in terms of availability
for research and anonymisation requirements), especially for
publications. Instead, we take advantage of the freely available
ICU patient data provided in the MIMIC-III database, com-
piled between 2001 and 2012 from patient admissions to the
Beth Israel Deaconess Medical Center in Boston, MA [18].
Thus, the procedure is to build and test our platform using
patient data from the MIMIC-III database, then verify our
results using patient data collected from hospital participating
in the SMITH project once available. After the platform and
its models are assessed and found useful, the platform is rolled
out with developed models for implementation in ICU for real-
time usage subject to a more extensive medical certification
foreseen in the SMITH project.

6https://www.smith.care/



Figure 1. HPC-based data science platform design for medical applications for seamless access by non-technical medical
experts.

C. Experimental HPC Setup for the Platform
Given the use of sophisticated DL models, our HPC-driven

data science platform’s computational requirements are high
for training models. Simultaneously, hospitals and clinics
can run the platform locally with trained models to perform
inference (i.e., much less computationally demanding) on real
patients in the future. That avoids data transfers of critical
patient datasets during the platform models’ real usage and
is a vital requirement. Our platform’s HPC design elements
take advantage of the Modular Supercomputing Architecture
(MSA) [19] developed by the DEEP series of projects7. While
the platform’s experimental evaluation uses the Data Analytics
Module (DAM) module (cf. Table I for selected technology
specifications) of the MSA-based DEEP prototype8, our plat-
form can also leverage the MSA-based JUWELS9 system to
scale to larger models.

TABLE I. SPECIFICATIONS OF THE DEEP-EST DAM
PROTOTYPE

CPU 16 nodes with 2x Intel Xeon Cascade Lake
Hardware Acceleration 16 NVIDIA V100 GPU

16 Intel STRATIX10 FPGA PCIe3
Memory 384 GB DDR4 CPU memory /node

32 GB DDR4 FPGA memory /node
32 GB HBM2 GPU memory /node

Storage 2x 1.5 TB NVMe SSD

IV. HPC-BASED PLATFORM DESIGN ELEMENTS

The HPC-based data science platform (see Fig. 1 A) can
be seamlessly used by medical experts to perform essentially
two different activities that are ’ARDS Time Series Analysis
and Model Training’ (see Fig. 1 B) and ’ARDS Time Series
Analysis and Model Inference’ (see Fig. 1 C). It is important
to understand that the former performs model training on the
Juelich Supercomputing Centre (JSC) HPC and AI Exascale

7https://www.deep-projects.eu/
8https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html
9https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/

JUWELS_node.html

Figure 2. Covid-19 Chest X-Ray and ARDS Analysis
Platform Environment.

infrastructure (see Fig. 1 D), while the latter is performing in-
ference on patients on Hospitals moderate HPC infrastructure
(see Fig. 1 E).

A. Data Science Platform Design Blueprint
For model training our platform used the MSA-based DEEP

DAM system (see Fig. 1 F) while we already started to use
also the MSA-based JUWELS system (see Fig. 1 G). The
deployment of trained models (see Fig. 1 top right) is foreseen
to be done using the Singularity10 container environment on
JUWELS (see Fig. 1 H)11 that is interoperable with Docker-
based solutions. We expect to run Docker12 container envi-
ronments (see Fig. 1 I) at Hospital computational and storage
resources (see Fig. 1 J). The platform uses a git-based data
management system called DataLad13 (see Fig. 1 P) to enable
a transparent and trackable access to patient datasets on the
premises at the hospital, while also the JSC infrastructure takes
advantage of DataLad in context of MIMIC-III datasets stored
in the Scalable Storage Service Module (SSSM) [19] of the
MSA (see Fig. 1 Q). Hence, the model inference with real
patient data will take place within the hospital moderate HPC
environment that is not a problem because inference itself
is not very much computational expensive (i.e., especially
when only some patients of the ICU are daily analysed).

10https://singularity.lbl.gov/
11https://apps.fz-juelich.de/jsc/hps/juwels/container-runtime.html
12https://www.docker.com/
13https://www.datalad.org/



Figure 3. Comparison of the different model structures.

As it is difficult to obtain an ’informed consent’ as outlined
in the General Data Protection Regulation (GDPR)14 from
many patients of the ICU our platform deployment approach
convinces medical experts.

The platform supports the training of ARDS time series
data (see Fig. 1 bottom right) via traditional machine learning
models that are using MPI and OpenMP (see Fig. 1 K) via
the Cluster modules [19] of the DEEP and JUWELS systems
using high single-thread performance CPUs (see Fig. 1 S).
Those models are used to exploit a new innovative platform
approach of using Network Attached Memory (NAM) [19]
for model sharing in teams (see Fig. 1 R) without the need
to store data analysis results (e.g., hyper-parameter tuning
or ’gridsearch’ results to disk). More notably, deep learning
training is supported by offering cutting edge many-core
processors and accelerators such as Nvidia GPUs (see Fig. 1 T)
as part of the Booster modules [19] of the DEEP and JUWELS
systems. The tensor cores of those systems are available by
using libraries such as cuDNN (see Fig. 1 O) in conjunction
with powerful deep learning libraries (see Fig. 1 M) such
as pyTorch15, TensorFlow16, and Keras17. Our platform is
even more powerful when considering that distributed deep
learning training is possible via multiple GPUs using tools like
Horovod18 or DeepSpeed19 which are available as modules
within the HPC environment (see Fig. 1 L,N and Fig. 2).

14https://www.eu-patient.eu/globalassets/policy/data-protection/
data-protection-guide-for-patients-organisations.pdf

15https://pytorch.org/
16https://www.tensorflow.org/
17https://keras.io/
18https://horovod.ai/
19https://www.deepspeed.ai/

B. Feature Selection with the Platform
Because our platform GUI is based on Jupyter notebook (see

Fig. 1 M) it enables a seamless visual interface for medical
experts to perform the necessary data preparation steps. Before
performing ’feature selection’ on the available data, it is worth
noting that of the ~44,000 patients in the original MIMIC-III
database, we consider only the 24,947 patients that received
mechanical ventilation during their ICU stays. Also, the patient
data has many features with missing values and noise. Since
we aim to predict missing values, we base our case study
approach on the most represented features in our dataset.
Hence, we first analyse the patient information (i.e., feature
selection), drop the features that have missing values in all
records, and try to determine which features have data in most
patient records. In this way we also reduce the overall size
of our data. Through this approach we find that six features
are very well represented: Respiratory Rate (RR), Heart Rate
(HR), Systolic Arterial Pressure (SAP), Diastolic Arterial
Pressure (DAP), Mean Arterial Pressure (MAP), and Blood
Oxygen Saturation (SpO2). Knowing that (a) the Fraction of
Inspired Oxygen (FiO2) is a ventilator parameter that is set by
ICU staff and is automatically recorded whenever it is adjusted
and (b) that the Potential of Arterial Oxygen (PaO2) is directly
related to SpO2, and keeping in mind that our final aim is to
assist in the diagnosis of ARDS which is done by calculating
the ratio of the two parameters mentioned above (P/F ratio),
we centre our approach on predicting values of SpO2 using
our built DL models.

C. Medical Pre-processing Steps with the Platform
The platform key feature is to enable medical experts to in-

teract with platform bringing in their medical expertise without
being exposed to the underlying HPC technical difficulties. For
example, the medical experts opted to disregard all patients



Figure 4. Performance comparison of the different model structures.

having less than 70 recorded timesteps during their ICU stay.
That reduced dataset at this point consists of 19,781 patients.
Some patients had extremely long records (in the range of
tens of thousands of timesteps), although this issue is resolved
through down-sampling. The timestamps for the recordings
are made consistent by up- or down-sampling each record.
Resampling the data resulted in all patient files consisting of
1000 timesteps, although some patients still had columns of
missing values which resulted in them being dropped from
analysis. At the end of the resampling step the total number
of patients available for analysis was 19,769. The resampled
data is finally standardised and normalised. At the end of pre-
processing all the features are within the same range, centred
around 0.

V. PLATFORM EVALUATION CASE STUDIES

This section describes the three learning and prediction ap-
proaches used to evaluate the usability and performance of the
HPC-based platform described in Section IV. To enable a bet-
ter comparison and understanding of the different structures,
we summarize all models together in Fig. 3. Additionally, we
present the training and testing performance of these models
in Fig. 4.
A. Gated Recurrent Units (GRUs) Approach

The GRU model is built with two GRU layers with 32 units
each, with dropout values of 0.2 and both kernel and recurrent
regularization, followed by an output layer (Dense layer of
size 1). 32 units were chosen for the layers after testing several
sizes and tuning for the combination that produced lowest loss
value. It is essential to mention here that this hyper-parameter
tuning of the different layer structures requires HPC resources
for our platform since layers’ concrete structure is usually not
known. The loss is calculated using the Mean Absolute Error
(MAE) function and the optimisation is performed using the
ADAM algorithm with a learning rate of 1e-4. Fig. 3 (a) shows
the model structure and the shape of the tensors at each layer.
The model had a total of 10,209 trainable parameters and was
trained for 15 epochs, at which point the loss value stabilised
at 0.7432. The training was completed in 405 seconds. This
value, multiplied by the standard deviation of the feature in
question, equates to an average difference of 1% difference

from the expected value of SpO2. The evolution of the training
and validation losses is represented in Fig. 4 (a).
B. One-Dimensional Convolution Approach

Our One-Dimensional Convolution (1D-Conv) model is
made up of three convolution layers with 128 filters each
and a stride of 9, each followed by a 1D-maxpooling layer,
except the last layer where we implement a GlobalMaxPool-
ing1D layer to simulate “flattening” the data before the fully-
connected output layer. Global maxpooling is used as it better
takes into consideration the structure and sequence of the
data than a normal Flatten() layer. To slowdown learning
and try to avoid overfitting, we implement L1 and L2 kernel
regularization at the input layer, and a 0.5 dropout layer before
the final 1D-Conv layer. Also here the HPC-based platform
features have been particularly effective in enabling multiple
different quick runs to find the best hyper-parameter setups
(e.g., dropout value). The structure of the 1D-Conv model is
presented in Fig. 3 (b). The built model had a total of 302,337
trainable parameters. For this implementation, the learning rate
of the ADAM optimiser was tuned to 5e-5 after several trials.
At the end of training, which was completed in 40 seconds,
the MAE plateaued at 0.725. The changes in training and
validation losses during the 20 epochs are presented in Fig. 4
(b).
C. Mixed Approach

Finally, the hybrid model constitutes two 1D-Conv layers
with 64 filters each, followed by a 32 unit GRU layer that leads
into the fully-connected output layer. Optimisation during
the training of this model was performed with a learning
rate of 5e-5 which eventually produced the most promising
results. The structure of the model is presented in Fig. 3
(c). This model had a total of 49,889 trainable parameters.
This model brings together elements from both approaches
described above and produce similar results. It performs much
better than the GRU model in terms of speedup, completing
training in 45 seconds, while its loss reduction is comparable.
The loss results are presented in Fig. 4 (c).

D. Results Discussions
The results presented above highlight One-Dimensional

Convolution networks as a promising approach to processing



medical sequence data due to it’s higher learning rate and
better performance in terms of loss reduction. This is evident
when we take into consideration that the two other models
required more time to complete fewer training steps. That
is especially beneficial in research if HPC time is limited.
Similarly, these models are much easier to fine-tune and work
with as medical experts, as they process the data in a similar
fashion to 2D-convolution models. In other words, these initial
phases of pre-processing and training are not difficult for the
persons undertaking the task of building these models if they
have only limited experience in using Convolutional Neural
Network (CNN) as medical experts.

Using a pure GRU model for sequence data is a tried and
true method, although our experience here made it clear that it
is bulky, and quite sensitive to minute changes in parameters.
It deserves more attention given that its loss reduction is still
somewhat comparable to the convolution model, however its
downfall is in the time required to train the model, which only
increases as the network grows and becomes more complex.

Although the mixed model performs similarly to the
1D-Conv model in terms of speedup, its results are only as
good as the basic GRU model. That is a positive aspect in
that it offers the same loss reduction as a GRU model with
reduced processing and training time, however it also suffers
from the same sensitivity to minor changes in the parameters.

VI. CONCLUSION

In this paper we presented the design of a HPC-based plat-
form for medical experts to perform analysis of different RNN
approaches to analysing medical timeseries data, one purely
based on GRUs, one using 1D-Conv, and a hybrid of both
technologies. Medical experts have been able to seamlessly use
the platform after having some short introduction and avoiding
technical details of HPC and AI elements of our platform.
The results of the platform case studies highlight that One-
Dimensional Convolution as promising method of predicting
missing values in time-series data. We can further conclude
that for ARDS medical experts still some know-how is needed
to understand some of the DL model elements despite the fact
that the platform abstracts away all technical difficulties.

The next steps in our research will be to further understand
the shortcomings of all three models and improve the data
preparation procedures with more significant features with
guidance from medical professionals using the platform. Ad-
ditionally, more experimentation will be done on the available
model in terms of increasing filters and the number of layers
and observing how that affects the output predictions.
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